June 08, 2021 Volume 17 Issue 22

Mechanical News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

hyperMILL 2024 CAD/CAM software suite

OPEN MIND Technologies has introduced its latest hyperMILL 2024 CAD/CAM software suite, which includes a range of powerful enhancements to its core toolpath capabilities, as well as new functionality for increased NC programming efficiency in applications ranging from 2.5D machining to 5-axis milling. New and enhanced capabilities include: Optimized Deep Hole Drilling, a new algorithm for 3- and 5-axis Rest Machining, an enhanced path layout for the 3D Plane Machining cycle, better error detection, and much more.
Learn more.


One-part epoxy changes from red to clear under UV

Master Bond UV15RCL is a low-viscosity, cationic-type UV-curing system with a special color-changing feature. The red material changes to clear once exposed to UV light, indicating that there is UV light access across the adhesive material. Although this change in color from red to clear does not indicate a full cure, it does confirm that the UV light has reached the polymer. This epoxy is an excellent electrical insulator. UV15RCL adheres well to metals, glass, ceramics, and many plastics, including acrylics and polycarbonates.
Learn more.


SPIROL Press-N-Lok™ Pin for plastic housings

The Press-N-Lok™ Pin was designed to permanently retain two plastic components to each other. As the pin is inserted, the plastic backfills into the area around the two opposing barbs, resulting in maximum retention. Assembly time is quicker, and it requires lower assembly equipment costs compared to screws and adhesives -- just Press-N-Lok™!
Learn more about the new Press-N-Lok™ Pin.


Why hybrid bearings are becoming the new industry standard

A combination of steel outer and inner rings with ceramic balls or rollers is giving hybrid bearings unique properties, making them suitable for use in a wide range of modern applications. SKF hybrid bearings make use of silicon nitride (twice as hard as bearing steel) rolling elements and are available as ball bearings, cylindrical roller bearings, and in custom designs. From electric erosion prevention to friction reduction and extended maintenance intervals, learn all about next-gen hybrid bearings.
Read the SKF technical article.


3M and Ansys train engineers on simulating adhesives

Ansys and 3M have created an advanced simulation training program enabling engineers to enhance the design and sustainability of their products when using tapes and adhesives as part of the design. Simulation enables engineers to validate engineering decisions when analyzing advanced polymeric materials -- especially when bonding components made of different materials. Understand the behavior of adhesives under real-world conditions for accurate modeling and design.
Read this informative Ansys blog.


New FATH T-slotted rail components in black from AutomationDirect

Automation-Direct has added a wide assortment of black-colored FATH T-slotted hardware components to match their SureFrame black anodized T-slotted rails, including: cube connectors (2D and 3D) and angle connectors, joining plates of many types, brackets, and pivot joints. Also included are foot consoles, linear bearings in silver and black, cam lever brakes, and L-handle brakes. FATH T-slotted hardware components are easy to install, allow for numerous T-slotted structure configurations, and have a 1-year warranty against defects.
Learn more.


Weird stuff: Moon dust simulant for 3D printing

Crafted from a lunar regolith simulant, Basalt Moon Dust Filamet™ (not a typo) available from The Virtual Foundry closely mirrors the makeup of lunar regolith found in mare regions of the Moon. It enables users with standard fused filament fabrication (FFF) 3D printers to print with unparalleled realism. Try out your ideas before you go for that big space contract, or help your kid get an A on that special science project.
Learn more.


Break the mold with custom injection molding by Rogan

With 90 years of industry experience, Rogan Corporation possesses the expertise to deliver custom injection molding solutions that set businesses apart. As a low-cost, high-volume solution, injection molding is the most widely used plastics manufacturing process. Rogan processes include single-shot, two-shot, overmolding, and assembly. Elevate your parts with secondary operations: drilling and tapping, hot stamping, special finishes, punch press, gluing, painting, and more.
Learn more.


World's first current-carrying fastening technology

PEM® eConnect™ current-carrying pins from Penn-Engineering provide superior electrical connections in applications that demand high performance from internal components, such as automotive electronics. This first-to-market tech provides repeatable, consistent electrical joints and superior installation unmatched by traditional fastening methods. Features include quick and secure automated installation, no hot spots or poor conductivity, and captivation options that include self-clinching and broaching styles.
Learn more about eConnect pins.


New interactive digital catalog from EXAIR

EXAIR's latest catalog offers readers an incredible source of innovative solutions for common industrial problems like conveying, cooling, cleaning, blowoff, drying, coating, and static buildup. This fully digital and interactive version of Catalog 35 is designed for easy browsing and added accessibility. Customers can view, download, print, and save either the full catalog or specific pages and sections. EXAIR products are designed to conserve compressed air and increase personnel safety in the process. Loaded with useful information.
Check out EXAIR's online catalog.


5 cost-saving design tips for CNC machining

Make sure your parts meet expectations the first time around. Xometry's director of application engineering, Greg Paulsen, presents five expert tips for cutting costs when designing custom CNC machined parts. This video covers corners and radii, designing for deep pockets, thread depths, thin walls, and more. Always excellent info from Paulsen at Xometry.
View the video.


What can you secure with a retaining ring? 20 examples

From the watch dial on your wrist to a wind turbine, no application is too small or too big for a Smalley retaining ring to secure. Light to heavy-duty loads? Carbon steel to exotic materials? No problem. See how retaining rings are used in slip clutches, bike locks, hip replacements, and even the Louvre Pyramid.
See the Smalley design applications.


Load fasteners with integrated RFID

A crane, rope, or chain may be required when something needs lifting -- plus anchoring points on the load. JW Winco offers a wide range of solutions to fasten the load securely, including: lifting eye bolts and rings (with or without rotation), eye rings with ball bearings, threaded lifting pins, shackles, lifting points for welding, and more. Some, such as the GN 581 Safety Swivel Lifting Eye Bolts, even have integrated RFID tags to clearly identify specific lifting points during wear and safety inspections and manage them digitally and without system interruption.
Learn more.


Couplings solve misalignments more precisely with targeted center designs

ALS Couplings from Miki Pulley feature a simplistic, three-piece construction and are available in three different types for more precisely handling parallel, angular, or axial misalignment applications. The key feature of this coupling design is its center element. Each of the three models has a center member that has a unique and durable material and shape. Also called a "spider," the center is designed to address and resolve the type of misalignment targeted. Ideal for unidirectional continuous movement or rapid bidirectional motion.
Learn more.


What is 3D-MID? Molded parts with integrated electronics from HARTING

3D-MID (three-dimensional mechatronic integrated devices) technology combines electronic and mechanical functionalities into a single, 3D component. It replaces the traditional printed circuit board and opens up many new opportunities. It takes injection-molded parts and uses laser-direct structuring to etch areas of conductor structures, which are filled with a copper plating process to create very precise electronic circuits. HARTING, the technology's developer, says it's "Like a PCB, but 3D." Tons of possibilities.
View the video.


'Engineer of the Year' chosen by largest aerospace society

Humberto "Tito" Silva III, a Sandia National Laboratories researcher, has been named Engineer of the Year by the American Institute of Aeronautics and Astronautics (AIAA), the world's largest aerospace technical society.

Humberto "Tito" Silva. [Photo by Lonnie Anderson, courtesy Sandia National Laboratories]

 

 

 

 

Selected by a committee of his peers, Silva was cited for improving failure-rate predictions of aerospace flight systems as they reenter Earth's atmosphere. The work helps direct engineers to attack the worst problems first for reentry rockets, spaceships, and satellites.

Silva's procedure, which he has dubbed "Tito's full-circle analysis methodology," uses computer modeling to determine the fewest number of computer simulations and physical experiments needed to get trusted data on a project.

"We were able to have high statistical confidence in our results. These were analogous to those achieved by researchers using many orders of magnitude more computational simulations and physical experiments," Silva said. "Our method saves money and time."

AIAA president Basil Hassan, who is also the deputy chief research officer at Sandia, said, "Tito's work helps ensure the safety, security, and reliability of the nuclear deterrent by helping to understand potential uncertainties in extreme thermal environments. The methodologies developed here could also be used for other entry and reentry-type applications that similarly concern engineers."

Silva's award will be presented in August at the AIAA Aerospace Spotlight Awards Gala, an annual event the organization describes as "recognizing the most influential and inspiring individuals in aerospace."

Succeeding with failure
Silva credits his unusually varied background, which includes study in several engineering and science fields, for endowing him with a jack-of-all-trades outlook that connects with the deeper perspective of researchers who self-confine to particular research areas.

"Many scientists deep-dive into subfields," he said. "My bread-and-butter is that I bring a different perspective. Technical experts fill in my knowledge gaps, and I fill in ones they haven't thought of." He describes himself as an "inside consultant," bridging subcategories in computer science, project management, and aerospace, mechanical, chemical, and electrical engineering.

Acting as a catalyst in a variety of fields doesn't blur his research focus, which is thermal science -- "pretty much the jell for all the work I've done," he said.

His teams feed data from modeling and physical experiments -- limited in number to keep costs down -- into computer models expected to simulate the actual effects. Results from the models are then used in experiments to see how derived data matches that from physically harvested data.

The work often shows considerable overlap between theory-based and experimental graphs, which lends weight to Silva's failure-rate predictions.

Super-sleuthing the cosmos
Working from an Earth-bound lab, Silva doesn't minimize the difficulty of determining events in outer space. The sleuth-like deductions are similar, he says, "to determining why an iPhone thermally or electrically fails in a box, if the box is in a closet, the closet in a room, the room in a building, the building on a barge in the hold of an aircraft carrier ..."

His first move is to simulate the environment, including the season of the year and time of day.

Then, there's the equipment. "If the reentry body is made partly of stainless steel, we think we know its thermal conductivity. But there's material variability from different factories, so we have uncertainty in how that affects our vehicle. So, we use a range of possible figures," he said.

Solving questions about a particular system entering Earth's atmosphere, subspecialists were needed to find the sweet spot between different forms of heat transfer. "So, we did a computational experiment on how to use all the test equipment most frugally. We needed to determine the optimum amount of experiments and computer simulations, so we weren't running, say, 5 million computer simulations and 5,000 experiments."

Using these deliberately limited means, his team found a way to map the probability space of all possible outcomes. "Then we found a condition with our model that stressed the system. We used that in the computer domain and then again in the experimental domain in an iterative fashion. That gave us our result."

Said Darcie Farrow, a former systems engineer overseeing nuclear weapon sustainment, "The multiple technical advances initiated by Tito are improving nuclear safety assessments as well as aerodynamic models for a wide range of flight systems."

Silva also has initiated collaborations with Los Alamos National Laboratory resulting in nuclear weapon system models that capture the response of both labs' components in fire environments for the first time, she said.

A peaceful past and stimulating future
Belying the future complexity of his work, Silva grew up in the visually simple farming country around El Paso, TX. There were no big buildings; he could see for miles.

The open fields contributed to his interest in outer space, he says: "It's easy to dream about the stars, growing up with only cotton fields in your backyard."

But his life grew more complicated when he left astrophysics as he started graduate school: "At the time, there was too much uncertainty in [astrophysics]," he said. "You couldn't experimentally prove that there is such a thing as black hole -- or, at least, back then there wasn't any experimental or tangible proof as there is now."

The space shuttle Columbia disaster in early February 2003 got him back into studying space -- specifically, aerospace engineering -- to finish his graduate school education. Silva said he "saw it in real time across the sky" as he was driving across Texas.

The emotional impact of the sight, reinforced by Texas radio stations' repeated playing of Stevie Ray Vaughan's song "The Sky is Crying," created a memory that he feels forged his future path.

"I knew then," he said, "that I wanted to apply uncertainty quantification to safety-driven problems and that aerospace engineering was a perfect field for that application. It was like a homecoming for me ... coming back to what I always loved."

The earlier disaster of the space shuttle Challenger was Silva's initial propellant into thoughts of aerospace. "The memory of watching that disaster -- also in real time with my principal and my classmates while in school -- left a huge impression on me as a young boy."

He maintains his interest in a number of academic fields in which he still takes classes and teaches to this day, he said.

But in Silva's life, he said, "It's clear that aerospace tragedies have had their way with my destiny."

Source: Sandia

Published June 2021

Rate this article

['Engineer of the Year' chosen by largest aerospace society]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2021 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy